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Abstract—In this letter we investigate a class of slow-fast
systems for which the classical model order reduction technique
based on singular perturbations does not apply due to the lack of
a Normally Hyperbolic critical manifold. We show, however, that
there exists a class of slow-fast systems that after a well-defined
change of coordinates have a Normally Hyperbolic critical
manifold. This allows the use of model order reduction techniques
and to qualitatively describe the dynamics from auxiliary reduced
models even in the neighborhood of a non-hyperbolic point. As
an important consequence of the model order reduction step,
we show that it is possible to design composite controllers that
stabilize the (non-hyperbolic) origin.

Index Terms—Model order reduction, Perturbation methods,
Nonlinear control systems.

I. INTRODUCTION

MODEL order reduction is a technique often used to
reduce the complexity of a system. There exist many

model order reduction techniques [1], [2], and the particular
type of method to be used usually depends on the structure
and properties of the original system being studied.

For two-timescale systems, a classical model order reduc-
tion technique is based on singular perturbation methods. Ba-
sically, we decompose a two-timescale system into two lower
dimensional ones [3]. One of them describes the dynamics
in the slow timescale, while the other describes the behavior
in the fast timescale. After the description of these two
separate systems is performed, one is able to fully understand
the dynamics of the original, two-timescale, plant. Moreover,
thanks to the aforementioned decomposition, the design of
controllers for two-timescale systems is greatly simplified.
Applications of the latter type of model order reduction
and the associated controller design are plenty, and can be
found in robotics, communications, electronics, smart-grids,
etc [3], [4], [5], [6]. However, model order reduction based on
singular perturbations depends on a strong assumption, called
Normal Hyperbolicity (see Section II for details). Whenever
such condition is not fulfilled, then the (timescales) reduction
method cannot be used.

Here we investigate a class of two-timescale systems for
which, in principle, the model order reduction based on singu-
lar perturbations is not applicable. However, after a well-suited
transformation, called geometric desingularization, we are able
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to discover hidden hyperbolic slow-fast dynamics. This allows
us to use classical model order reduction techniques (based on
singular perturbations) to qualitatively describe the behavior
of the original two-timescale system. Furthermore, thanks to
the capability for model order reduction, we are also able to
design controllers in the “composite-control” framework [3],
see Section V.

II. PRELIMINARIES
We study slow-fast systems, which are of the form

ẋ = f (x,z,ε)

ε ż = g(x,z,ε),
(1)

where x ∈Rns , z ∈Rn f , 0 < ε� 1, and f (x,z,ε) and g(x,z,ε)
are sufficiently smooth functions. The independent time vari-
able for (1) is t and therefore the over-dot stands for d

dt . When
studying slow-fast systems one usually defines the fast-time
variable τ = t

ε
, which allows to rewrite (1) as an ε-family of

vector fields

Xε :

{
x′ = ε f (x,z,ε)
z′ = g(x,z,ε),

(2)

where now the prime ′ denotes derivative with respect to
τ . Note that as long as ε 6= 0, the trajectories of (1) are
equivalent to those of (2), the only difference is their time
parametrization.

A. Model order reduction via singular perturbations
This method aims to take advantage of the structure of (1)

in order to obtain two reduced models which, together, provide
sufficiently good information of the trajectories of (1). Here
we briefly describe the method. Let us start by taking the limit
ε → 0 of (1) and (2), thus defining the reduced systems

ẋ = f (x,z,0)
0 = g(x,z,0),

(3)

which is a Differential Algebraic Equation, and

X0 :

{
x′ = 0
z′ = g(x,z,0),

(4)

called the layer equation. The first ingredient is to define the
critical manifold.

Definition 1 (Critical manifold). The critical manifold S is the
set of critical points of the vector field X0, that is

S =
{
(x,z) ∈ Rns+n f |g(x,z,0) = 0

}
. (5)
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Note that S is also the phase-space of the trajectories of
the DAE (3). Next, an essential ingredient for model order
reduction via singular perturbations is that the critical manifold
S is Normally Hyperbolic.

Definition 2 (Normally Hyperbolic). A point s ∈ S is said
to be hyperbolic if s is a hyperbolic equilibrium point of the
reduced vector field z′ = g(x,z,0), where x is taken as a fixed
parameter. The manifold S is called Normally Hyperbolic if
every s ∈ S is hyperbolic.

Equivalently, a critical manifold is Normally Hyperbolic if
and only if ∂g

∂ z |S has no eigenvalues with zero real part. If
that is the case, by the implicit function theorem, there exists
a unique local solution z = Z(x) to the algebraic equation
g(x,z,0) = 0 in a neighborhood of any s ∈ S. It follows that
the DAE (3) is reduced to the the slow subsystem

ẋ = F(x), (6)

where F(x) = f (x,Z(x),0). The relationship between trajecto-
ries of the slow subsystem and those of the slow-fast system
Xε is explained by Fenichel’s Theory [7], [8].

Theorem 1. Consider a slow-fast system (1) or (2), and
suppose that S0 ⊂ S is a compact normally hyperbolic sub-
manifold. Then for ε > 0 sufficiently small, the following hold
• There exists a locally invariant manifold Sε diffeomorphic

to S0.
• Sε has distance of order O(ε) (as ε → 0) from S0.
• The flow on Sε converges to the flow on S0 as ε → 0.
• Sε has the same stability properties as S0.
• Sε is usually not unique, but all such manifolds lie within

distance O(exp(−c/ε)) from each other. Any of such
representatives is called the slow manifold.

Simply put, Theorem 1 tells us that the reduced systems (6)
and (4) provide a good enough approximation of the dynamics
of a slow-fast system (1) or (2).

We must note that the timescale separation in (1) or (2) is
explicit, defining the so-called “standard form”. However, sys-
tems without explicit timescale separation (or in non-standard
form) can also be treated [9], [10], [11]. Briefly speaking,
a system ẋ = F(x,ε) exhibiting slow and fast dynamics can
be put into standard form (1) via a change of coordinates
which may depend on ε . These systems, however, still need to
satisfy certain hyperbolicity-type conditions in order to define
the aforementioned change of coordinates.

In this article, we shall study a class of slow-fast systems,
in standard form, that do not satisfy the Normal Hyperbolicity
property. Thus, in principle, model order reduction as ex-
plained above is not applicable. However, the class of systems
that we present below have a “hidden” Normally Hyperbolic
critical manifold which is discovered after an appropriate
change of coordinates.

In order to introduce the class of systems to be studied, we
need the concept of quasihomogeneity.

Definition 3 (Quasihomogeneous function). Let
x = (x1, . . . ,xn) ∈ Rn and f : Rn → R be a smooth function.
The function f is said to be quasihomogeneous of quasidegree

δ and type α = (α1, . . . ,αn) ∈ Nn if and only if for all ρ > 0
holds

f (ρα1x1, . . . ,ρ
αnxn) = ρ

δ f (x1, . . . ,xn). (7)

Note that if α = (1, . . . ,1) we get the usual definition of
a homogeneous function of degree δ . Below we shall deal
with quasihomogeneous polynomials, for which the quasiho-
mogeneity type and degree can be determined via the Newton
Polygon method [12].

For simplicity, a quasihomogeneous object of type α =
(α1, . . . ,αn) shall be called α-quasihomogeneous.

III. THE GEOMETRIC DESINGULARIZATION
METHOD

The geometric desingularization method is a suitable tech-
nique employed to study the behavior of dynamical systems
near a non-hyperbolic singularity. It was introduced in the
context of slow-fast systems in [13]. Thanks to such technique
many complex phenomena in the vicinity of a non-hyperbolic
point have been elucidated. Here, we present a very brief
description of the technique, for more details see e.g. [8],
[14]. To better explain the method in the context of slow-
fast systems, it is convenient to lift the family Xε , given by
(2), up and instead consider a single vector field on Rns+n f +1

of the form

X :


x′ = ε f (x,z,ε)
z′ = g(x,z,ε)
ε ′ = 0.

(8)

For the rest of this article, we shall assume that the origin
is a non-hyperbolic equilibrium point of X , that is ∂g

∂ z (0,0,0)
has at least one eigenvalue with zero real part. In an intuitive
way, the geometric desingularization method transforms non-
hyperbolic points of slow-fast systems to (partially) hyper-
bolic ones. The method consists of a well suited coordinate
transformation called blow up. Such a transformation describes
the system in generalized polar coordinates and is defined as
follows.

Definition 4. A (quasi-homogeneous)1 blow up transformation
is a map2

Φ : Sns+n f ×R→ Rns+n f +1

Φ(x̄, z̄, ε̄,ρ) 7→ (ρα x̄,ρβ z̄,ργ
ε̄), (9)

where (x̄, z̄, ε̄) ∈ Sns+n f (where SN denotes the N-sphere) ρ ∈
[0,∞), α ∈ Nns , β ∈ Nn f and γ ∈ N.

Note that the sphere Sns+n f ×{0} is mapped to the origin
of Rns+n f , which means that a neighborhood U of the origin
can be related to a neighborhood V of the sphere Sns+n f ×{0}.
The choice of the weights (α,β ,γ) is, in principle arbitrary,
but later will be related to the quasihomogeneity type of the
vector field. The blow up map induces the ”blown up” vector
field X̂ on Sns+n f ×R, defined as X̂ = DΦ−1 ◦X ◦Φ, where
DΦ denotes the differential of Φ. Usually, it happens that X̂

1A homogeneous blow up (or simply blow up) refers to all the exponents
α , β , γ set to 1.

2Here, for simplicity of notation, ρα x̄ = (ρα1 x̄1, . . . ,ρ
αns x̄ns ), and similarly

for ρβ z̄.
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vanishes all along Sns+n f ×{0}. In that case one defines the
desingularized vector field X by X = 1

ρm X̂ , where m ∈N is as
large as possible such that X is not degenerate along Sns+n f ×
{0}. Then, note that X̂ and X are smoothly equivalent for all
ρ > 0. This means that the dynamics of X around the sphere
Sns+n f ×{0} are equivalent to those of X̂ and in turn, the latter
gives a qualitative description of the dynamics of X around the
origin. The advantage of studying X is that, whenever the blow
up map is well chosen, the singularities of X are (partially)
hyperbolic, making its analysis much simpler than that of X .

The question on how to determine the appropriate weights
of the blow up map for general systems of dimension greater
than 2 is an open problem [8, Section 7.2 and 7.8]. However, as
long as the singularity is not too degenerate, we can potentially
desingularize a vector field via a finite number of blow ups.
In this article we study a class of systems for which the blow
up map is given by the properties of the class itself.

IV. MODEL ORDER REDUCTION VIA GEOMETRIC
DESINGULARIZATION

Consider the slow-fast system (8) and let
α = (α1, . . . ,αns) ∈ Nns , β = (β1, . . . ,βn f ) ∈ Rn f , γ ∈ N,
q = (α,β ,γ) ∈ Nns+n f +1 and δ ∈ N. We assume that the
origin (x,z) = (0,0) ∈ Rns ×Rn f is an isolated equilibrium
point of X for all ε > 0, and that X satisfies the following
properties
P1. fi is q-quasihomogeneous of quasidegree δ +αi for all

i = 1, . . . ,ns.
P2. gi is q-quasihomogeneous of quasidegree δ + βi for all

i = 1, . . . ,n f .
P3. ∂g

∂ z (0,0,ε) ∈ O(ε). That is, in a neighborhood of the
origin, the linear part of g vanishes as ε → 0.

Remark 1. For the class of systems studied here, the loss
of normal hyperbolicity is due to P3 above. This is not the
only way in which a slow-fast system may lose normal hyper-
bolicity. Another one is, e.g., due to degenerate singularities
induced by nonlinear terms in the layer equation, compare
with [14], [15], [16].

Expanding g(x,z,ε) around z = 0, and considering P3, we can
write

g(x,z,ε) = A0(x,ε)+ εA1(x)z+O(z2), (10)

where A0(0,ε) = 0 and A1(x) is non-singular in a sufficiently
large neighborhood of x = 0. Note that the Jacobian, at
the origin, associated to the layer equation X0 is nilpotent.
Therefore, the classical model order reduction method via
singular perturbations is not applicable. In order to be able
to describe the behavior of X , we shall use the geometric
desingularization technique. For this, let a blow up map (recall
Definition 4) be defined by

x = ρ
α x̄, z = ρ

β z̄, ε = ρ
γ
ε̄, (11)

where (x̄, z̄, ε̄) ∈ Sns+n f , and ρ ∈ [0,∞).

Remark 2. Note that we relate the weights of the blow up
map to the quasihomogeneity type of the functions f and g.

Remark 3. Usually, it is difficult to study a vector field in
spherical coordinates (the blown up vector field). To overcome
such difficulty, one usually considers charts (parametrization
of a hemisphere). The most important chart in the type of
analysis presented here is the ”central” chart defined as Kε̄ =
{ε̄ = 1} [8], [13]. It is precisely in such a chart where the
hidden hyperbolic slow-fast dynamics are found. Moreover,
note that the chart Kε̄ corresponds to a small neighborhood
of size O(εα/γ)×O(εβ/γ) of the origin of (8).

Proposition 1. The desingularized vector field in the chart
Kε̄ = {ε̄ = 1} reads as

ρ
′ = 0

x̄′ = ρ
γ f̄ (x̄, z̄)

z̄′ = ḡ(x̄, z̄),
(12)

where f̄ (x̄, z̄) = f (x̄, z̄,1) and ḡ(x̄, z̄) = g(x̄, z̄,1).

Proof. The blow up map in chart Kε̄ = {ε̄ = 1} is given by

(x,z,ε) = (ρα x̄,ρβ z̄,ργ), (13)

where, for simplicity, ρα x̄ = (ρα1 x̄1, . . . ,ρ
αns x̄ns), and simi-

larly for ρβ z̄. It follows from ε ′= 0 in (8) and (13) that ρ ′= 0.
Next

ρ
αi x̄′i = ρ

γ fi(ρ
α x̄,ρβ z̄,ργ)

= ρ
γ+δ+αi fi(x̄, z̄,1),

(14)

for all i = 1, . . . ,ns. Using similar arguments for the rescaling
of the z-variable we obtain

ρ
′ = 0

x̄′ = ρ
γ+δ f̄ (x̄, z̄)

z̄′ = ρ
δ ḡ(x̄, z̄).

(15)

Finally, the desingularized vector field is obtained by rescaling
time by a factor 1

ρδ
, leading to (12). Here, to avoid introduc-

ing more notation, we are recycling the prime ′ to denote
the derivative with respect to the aforementioned rescaled
time.

Remark 4. The loss of normal hyperbolicity in (8) is due
to the fact that the linear part of g is of order O(ε), see
(10). However, note that with the change of coordinates of
Proposition 1, the linear component of ḡ becomes independent
of the parameter.

Next, we have the most important property of (12).

Theorem 2. The desingularized vector field (12) with 0 <
ρ� 1 is a slow-fast system with Normally Hyperbolic critical
manifold given by

S̄ =
{
(x̄, z̄) ∈ Rns+n f | ḡ(x̄, z̄) = g(x̄, z̄,1) = 0

}
. (16)

Proof. The proof follows from the fact that A1(x̄) (in (10)) is
non-singular in a sufficiently large neighborhood of the origin
(x̄, z̄) = (0,0).

At this point, in view of Theorem 2, all the classical theory
of singular perturbations [3] apply to the blown up vector field
(12). This leads to the main result of this document.
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Theorem 3. Under the assumptions of this section, up to time
rescaling, and for ε > 0 sufficiently small, the solutions of (8)
are locally equivalent to those of the reduced systems

˙̄x = f (x̄,h(x̄),1), (17)

where h(x̄) is the unique root of g(x̄, z̄,1) = 0, and

z̄′ = g(x̄, z̄,1). (18)

Proof. First, recall that X denotes the vector field (8), and Φ

the blow up map (11). Let X̂ denote the blown up vector field,
that is X̂ = DΦ−1 ◦ X ◦Φ, where DΦ denotes the Jacobian
of Φ. Since Φ is a diffeomorphism on Sns+n f × (0,∞), the
vector fields X and X̂ are conjugate for all ρ > 0. Next,
the desingularized vector field X is defined by X̄ = 1

ρδ
X̂

(see details in Proposition 1). The vector fields X̂ and X are
smoothly equivalent for all ρ > 0. That is, their only difference
is the timescale of their solutions.

According to Lemma 2, the vector filed X is slow-fast with
a normally hyperbolic critical manifold. From the implicit
function theorem, it follows that there exists a unique root
z̄ = h(x̄) of the algebraic equation g(x̄, z̄,1) = 0. Then, the
corresponding slow dynamics are given as (17). On the other
hand from (12) it is evident that the ”blown up” layer
equation is (18), where x̄ is treated as a fixed parameter.
Next, by Geometric Singular Perturbation (Theorem 1 see also
[7], [8]) it follows that within a compact neighborhood of
the origin (x̄, z̄) = (0,0), the solutions of the desingularized
vector field X are of the form x̄(τs) = x̄r(τs) + O(ργ) and
z̄(τ f ) = z̄r(τ f )+O(ργ), where x̄r and z̄r are solutions of the
slow and the layer equations respectively, and τs, τ f denote the
slow and fast times related to the slow-fast system X . Finally
we can go back to the qualitative behavior of the original
vector field X by tracking back the transformations performed,
first the desingularization between X̂ and X and second the
blow down (the inverse of the blow up map Φ) taking X̂ to
X .

Remark 5. Hidden normally hyperbolic manifolds as de-
scribed above frequently occur in the analysis of slow-fast
systems, for example in the context of biochemical oscillations
see [17], [18]. However, a general treatment of such scenario
is not available. With this note we attempt to contribute
to the description of a class of systems for which the ex-
istence of (hidden) slow-fast normally hyperbolic dynamics,
after geometric desingularization, is expected. Such hidden
Normally Hyperbolic properties are also of crucial importance
for control purposes. See more details in Section V and in
Example VI-B.

V. COMPOSITE CONTROL

The theory presented above has important applications for
controller design. In few words, in Section III we have shown
that after a change of coordinates, the class of systems (8),
satisfying properties P1-P3, have a Normally Hyperbolic struc-
ture. This implies that within the blow up space, the origin of
the desingularized vector field can be stabilized via a compos-
ite controller in the spirit of [3]. The only requirement would

be that the controller is of the appropriate quasihomogeneity
type to satisfy properties P1-P2, see an illustrative example in
Section VI-B. Thus, it is natural that under the aforementioned
conditions, the controller that stabilized the non-hyperbolic
origin of (8) can also be decomposed. However, we currently
study generalizations and cases where these conditions are not
necessarily met. Related results shall be presented elsewhere
by the authors.

VI. ILLUSTRATIVE ACADEMIC EXAMPLES

In this section we present a couple of examples showing
the highlights of our contribution.

A. Example 1. (Model order reduction)

Consider the slow-fast system

x′ =−εx2z

z′ =−εz+ x2

ε
′ = 0.

(19)

Notice that the origin is an isolated equilibrium point, and that
it is not possible to conclude anything about its stability via
linearization. On the other hand, the corresponding DAE and
layer equation are given by

DAE:

{
ẋ =−x2z
0 = x

Layer:

{
x′ = 0
z′ = x2 (20)

Thus, it is evident that it is quite difficult to conclude any-
thing about the dynamics of (19) from the “reduced systems”
(20). So we proceed by following Section III.

The polynomials f (x,z,ε) =−x2z and g(x,z,ε) =−εz+x2

are quasihomogeneous of type α = (2,1,3) and quasidegree 5
and 4 respectively, that is, δ = 3. According to the quasiho-
mogeneity type α and quasidegree δ , the blow up map reads
as

x = ρ
2x̄, z̄ = ρ z̄, ε = ρ

3
ε̄. (21)

The desingularized vector field3 in the chart Kε̄ is given by

ρ
′ = 0

x̄′ =−ρ
3x̄2z̄

z̄′ =−z̄+ x̄2.

(22)

Note that for 0 < ρ � 1 (22) can be regarded as a slow-fast
system with normally hyperbolic stable critical manifold S̄ ={
(x̄, z̄) ∈ R2 | z̄ = x̄2

}
, and then the slow subsystem is

˙̄x =−x̄4. (23)

It follows from a simple analysis that (23) has an isolated
equilibrium point p at the origin, which is a (non-hyperbolic)
saddle point; it is attracting (resp. repelling) for initial con-
ditions x̄0 > 0 (resp. x̄0 < 0). On the other hand, the layer
equation reads as

z̄′ =−z̄+ x̄2. (24)

3Recall that to obtain the desingularized vector field first one performs the
blow up map, and then rescales by an appropriate monomial ρm.
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One then concludes that every point s̄ ∈ S̄ is a ”global”
exponentially stable equilibrium point of the layer equation
(24) along each fiber x̄ =constant.

From the previous analysis it follows that the dynamics of
the reduced systems and of the slow-fast system (22) are as
shown in Figure 1.

p

Fig. 1. The description of (22) is realized from the reduced subsystems (23)
and (24), shown in the left side. The red thick curve depicts the slow manifold
S̄, and the dynamics within it are given by the slow flow (23). Transversally
to S̄, the dynamics are given by the layer equation (24), depicted in thin blue.
The behavior for ρ > 0 is described by Fenichel’s theory, and is shown in the
right side.

We can now proceed with the qualitative description of the
dynamics of (19) for ε > 0 sufficiently small. First, define the
set ∆ =

{
(x,z) ∈ R2 |εz = x2

}
. Note that ∆ and S̄ are related

via the blow up map (21), however, ∆ is not a normally
hyperbolic critical manifold according to Definition 2. Due to
the qualitative analysis performed in the blown up space, we
know that trajectories of (19) approach ∆ up to a neighborhood
Uε of it. Within this neighborhood, the trajectories will be
governed by the flow along ∆, which is equivalent to the flow
along S̄. The saddle point p is mapped to a saddle point
o = (0,0). Finally, we conclude that for ε > 0 sufficiently
small, the flow of (19) is equivalent to that shown in Figure 1.
This is evidenced in Figure 2, where we provide a simulation
of the dynamics of (19).

−0.4 −0.2 0.0 0.2 0.4

x(t)

−0.5

0.0

0.5

1.0

1.5

2.0

z
(t
)

o

Fig. 2. Phase-portrait of (19) coinciding with the qualitative description
provided via model order reduction. The dashed curve represents ∆ and
corresponds to a ”hidden” slow manifold S̄ found in the blown up space,
compare with Figure 1. For simulation purposes we have used ε = 0.05.

B. Example 2. (Composite control)

Let us now illustrate how composite control can be used
for the class of systems studied in this document. Consider
the control system

x′ =−εx2z

z′ = εz+ x2 +u

ε
′ = 0.

(25)

Following a similar analysis as in the previous example, the
desingularized vector field reads as

ρ
′ = 0

x̄′ =−ρ
3x̄2z̄

z̄′ = z̄+ x̄2 + ū(x̄, z̄),

(26)

where ū(x̄, z̄) = u(x̄, z̄,1) denotes the blow up of the controller
u. The open-loop critical manifold is given by S̄ =

{
z̄ =−x̄2

}
.

Moreover, S̄ is unstable since the corresponding eigenvalue of
the layer equation is λ = 1 for every point s̄ ∈ S̄. The idea to
stabilize the origin of (26) is to design the controller ū using
the composite methodology (see details in [3]). For this, one
proposes ū(x̄, z̄) = ūs(x̄)+ ū f (x̄, z̄), where ūs denotes the slow
controller, while ū f the fast one. A useful (but not necessary)
property is that ū f vanishes along solutions of 0 = ḡ(x̄, z̄)+ ūs.
Thus, the corresponding DAE reads as

˙̄x =−x̄2z, 0 = z̄+ x̄2 + ūs(x̄), (27)

where the algebraic equation has solution z̄ = −(x̄2 + ūs). It
follows that the slow subsystem is simply given by ˙̄x= x̄2(x̄2+
ūs). So, we can choose ūs(x̄) =−x̄− x̄2, and then the closed-
loop slow subsystem is given by ˙̄x =−x̄3. It is straightforward
to show4 that x̄ = 0 is an asymptotically stable point of the
closed-loop slow subsystem. Next, the layer equation reads as

z̄′ = z̄+ x̄2 + ūs(x̄)+ ū f (x̄, z̄) = z̄− x̄+ ū f (x̄, z̄), (28)

where x̄ is treated as a fixed parameter. Next, let us propose
ū f (x̄, z̄) =−2(z̄− x̄), and therefore the closed-loop layer equa-
tion reads as z̄′ =−(z̄− x̄). It is again straightforward to show5

that the set {z̄ = x̄} is asymptotically stable for every x̄ ∈Ux̄,
where Ux̄ ∈ R is any compact neighborhood of x̄ = 0. Then,
the composite controller6 is given by

ū = x̄− x̄2−2z̄. (29)

The complete closed-loop system (27) now reads as

ρ
′ = 0

x̄′ =−ρ
3x̄2z̄

z̄′ =−z̄+ x̄,

(30)

where the corresponding closed-loop critical manifold is Nor-
mally Hyperbolic and stable, and the origin (x̄, z̄) = (0,0) is
asymptotically stable for ρ > 0 sufficiently small.

4Using a Lyapunov function V (x̄) = 1
4 x̄4.

5Using a Lyapunov function W (x̄, z̄) = 1
2 (z̄− x̄)2.

6The proposed controller ū = ūs + ū f also satisfies the so-called intercon-
nection conditions of the composite control method (see Section 7.6 of [3]),
but for simplicity of exposition, we have left those details out.
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We now go back to the original coordinates to find the
appropriate controller that stabilizes the origin of (25). The
transformation performed to obtain the auxiliary slow-fast
system was in two steps: first the blow up map, and then
the time rescaling, see Section III. In this particular example,
the aforementioned operations amount to the relation u = ρ4ū,
that is

u(x,z,ε) = ρ
4ū(x̄, z̄) = ρ

4x̄−ρ
4x̄2−2ρ

4z̄

= ε
2/3x− x2−2εz,

(31)

where the last equality is due to the blow up map (21).
Note that, indeed, u given by (31) is a quasihomogeneous
polynomial of type α =(2,1,3) and quasidegree 4, as required.
A simulation of the corresponding trajectories and controller
is shown in Figure 3.
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Fig. 3. Left: Phase-portrait of the closed-loop system (25) under the action of
the controller (31). For the simulation we have used ε = 0.05. Right: Control
signals for the different initial conditions of the phase-portrait.

VII. DISCUSSION AND CONCLUSIONS

In this document we have investigated a model reduction
technique for a class of two-timescale systems which are not
normally hyperbolic at the origin. In principle, the classical
model order reduction technique based on singular perturba-
tions is not applicable for such class of systems. However, we
have shown that after an appropriate transformation, called
geometric desingularization, the class of systems under study
turns out to be suitable for decompositions into slow and
fast components. Geometric desingularization and model order
reduction based on singular perturbations have been combined
successfully to describe the dynamics of a two-timescale
system around a non-hyperbolic point. Moreover, we have
shown, in an illustrative example, that thanks to the capability
to use model order reduction in the blown up space, one
is able to design controllers that stabilize a non-hyperbolic
equilibrium point with the composite algorithm in the spirit
of [3].

As future research, we plan to explore whether the model
reduction method presented here can be extended to a bigger
class of non-hyperbolic slow-fast systems. In particular, it
would be interesting to apply our result to the reduction of
large scale networks [19], [20] which may have degenerate

dynamics. Moreover, the development of controllers for slow-
fast systems with non-hyperbolic dynamics needs to be further
investigated, particularly when more than two timescales are
involved.

REFERENCES

[1] G. Obinata and B. D. Anderson, Model reduction for control system
design. Springer Science & Business Media, 2012.

[2] A. C. Antoulas, D. C. Sorensen, and S. Gugercin, “A survey of model
reduction methods for large-scale systems,” Contemporary mathematics,
vol. 280, pp. 193–220, 2001.

[3] P. V. Kokotovic, H. K. Khalil, and J. O’Reilly, Singular Perturbation
Methods in Control: Analysis and Design. Orlando, FL, USA:
Academic Press, Inc., 1986.
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